Structure, composition, and mechanical properties of shark teeth.

نویسندگان

  • Joachim Enax
  • Oleg Prymak
  • Dierk Raabe
  • Matthias Epple
چکیده

The teeth of two different shark species (Isurus oxyrinchus and Galeocerdo cuvier) and a geological fluoroapatite single crystal were structurally and chemically characterized. In contrast to dentin, enameloid showed sharp diffraction peaks which indicated a high crystallinity of the enameloid. The lattice parameters of enameloid were close to those of the geological fluoroapatite single crystal. The inorganic part of shark teeth consisted of fluoroapatite with a fluoride content in the enameloid of 3.1 wt.%, i.e., close to the fluoride content of the geological fluoroapatite single crystal (3.64 wt.%). Scanning electron micrographs showed that the crystals in enameloid were highly ordered with a special topological orientation (perpendicular towards the outside surface and parallel towards the center). By thermogravimetry, water, organic matrix, and biomineral in dentin and enameloid of both shark species were determined. Dentin had a higher content of water, organic matrix, and carbonate than enameloid but contained less fluoride. Nanoindentation and Vicker's microhardness tests showed that the enameloid of the shark teeth was approximately six times harder than the dentin. The hardness of shark teeth and human teeth was comparable, both for dentin and enamel/enameloid. In contrast, the geological fluoroapatite single crystal was much harder than both kinds of teeth due to the absence of an organic matrix. In summary, the different biological functions of the shark teeth ("tearing" for Isurus and "cutting" for Galeocerdo) are controlled by the different geometry and not by the chemical or crystallographic composition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Chemical Composition on Wear and Microstructural Properties of Babbitt Coatings

Babbitt is a white silvery alloy that composed of Tin, Lead, Copper and Antimony. This alloy is the most current bearing alloy in industrial applications. The characteristics of this alloy, such as high wearing resistance and low coefficient of friction, have converted it into a bearing cover. The target of this study is investigation on the effects of alloy elements on wearing and micro-struct...

متن کامل

Influence of Cu and Ni on the Microstructure and Mechanical Properties of an HSLA Steel

In this research the role of alloying elements on the microstructure and mechanical properties of an as cast and hot rolled high strength low alloy (HSLA) steel was studied. Different compositions with different amount of copper in the presence of nickel, hot rolled and quenched in oil. Tensile test, hardness test, scanning electron microscope (SEM) and optical microscope (OM) were used to eval...

متن کامل

The Effect of Chemical Composition on Wear and Microstructural Properties of Babbitt Coatings

Babbitt is a white silvery alloy that composed of Tin, Lead, Copper and Antimony. This alloy is the most current bearing alloy in industrial applications. The characteristics of this alloy, such as high wearing resistance and low coefficient of friction, have converted it into a bearing cover. The target of this study is investigation on the effects of alloy elements on wearing and micro-struct...

متن کامل

Effect of Interlayer Composition on the Microstructure and Mechanical Properties of 1050 Aluminium to St14 Carbon Steel Joint Via Resistance Spot Welding Method

Effect of  Interlayer Composition on the Microstructure and Mechanical Properties of 1050 Aluminium to St14 Carbon Steel Joint Via Resistance Spot Welding Method.

متن کامل

Effect of Temperature and Gas Flux on the Mechanical Behavior of TiC Coating by Pulsed DC Plasma Enhanced Chemical Vapor Deposition(TECHNICAL NOTE)

  There are many factors such as voltages, duty cycle, pressure, temperatures and gas flux in coatings process that were effective in changing coatings characteristic. In this paper in plasma enhanced chemical vapor deposition (PECVD) technique, temperature and gas flux are two important variants that affecting the coatings structure and mechanical properties. All TiC coating deposited on a hot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of structural biology

دوره 178 3  شماره 

صفحات  -

تاریخ انتشار 2012